Interactive Reporting Dynamic Dates

Dynamic dates are an exciting new feature in IR designed to enhance the flexibility in generating reports with Date based criteria.

With prior versions of IR, when you added a date lookup, it would then construct a filter that would only include transactions between the given start and end dates entered.

E.g.. if your date lookup was called invoice_date, then any time you ran a report it would filter IR would generate SQL like this

SELECT {your metrics} FROM {your_datesource}

WHERE invoice_date>= { Invoice_date_Start } AND invoice_date<= { Invoice_date_End } { AND more filters}

The problem with this is, if you wanted to be able to do more sophisticated analysis based on date date outside the start and end ranges, it would automatically be filtered

In the latest 3.2 version of IR, we now give you direct access to these start and end date values in your own SQL, so you can control exactly how the data is filtered by date. Inside the template, for each Date filter you have, there is a new “Filter Type” option.

 [image: image1.png]P —— 3

=
B oot | Logt

 admin Links Home = Templates = Sales Template = Edit

8 ome invoice_date Lookup

D vsppings Edit Lookup

=7 remplotes UpdateModfy Lockup fnvcice _date'
Internal Name [invoice_dete | @
Analysis Label | Sales (7}
F petail @
DataType [Dae =] @
Filter Type [DynamicDate =] @
Align [Parameters =] @

save) (Conee
Ot omss 30y Tril - 30 cays remaining

o
& T Neamw

Then when constructing your mappings you can add the logic for dealing with the start and end dates directly to your SQL data source for the main transaction table. It doesn’t work with table only Sources.

Given a lookup called MyDateLookup then the Start Date is represented by @MyDateLookup_start and the End Date by @MyDateLookup_end
[image: image2.png]=lolx|

T s S 3
E = ey

: Set Datasource

[~AdminLinks — Home = Mappings = Notthwind - Demo Mapping - (artran) Tablg

| Mapping Editor (1 of 2)
Selectthe Data you wish to Mapjaker
Invoice (artran) Mapping

© Table [Categares =] @ Where o

SELECT 2.0 as currency_factor, [order details].UnitPrice A9 unit_price, [Order
Details] .Quantity, [Order Details] .costprice, Orders.CustomerID,
Oraers.EmployeeID, Orders.ShipVia, [Order Details] .ProductiD,
Products.CategoryId, Products.SupplierId, Orders.OrderID, Orders.OrderDate
FROM Orders INNER JOIN ([Order Details] LEFT JOIN Products ON [Order
roquctId = Products.ProductID) ON Orders.OrderID = [Order

Details

@ squ

—
b provewadvanced °

Title | Invoice o

Show System Tables

Run SQL against a Mapping

<cBack)(Next»»

(=
P

R oclitraret

So here in our Standard Northwind demo you can see how we have changed it to a dynamic date format and added the following WHERE Clause filter

WHERE orders.OrderDate<=@invoice_date_end AND orders.OrderDate>=@invoice_date_start

This will behave exactly as a Standard Where Clause filter, but gives a starting example of a dynamic date filter.

A more complex example might be where we want to combine Prior Balance Information (Before the Start Date) with Current Journal Entries, between the Start and End Date Ranges

SELECT {some data fields }

From {Dataset1} Where {date_filter} < @MyDateLookup_start

UNION ALL

SELECT {some more data fields }

FROM {Dataset2}

WHERE {another_date_filter} >= @MyDateLookup_start AND {another_date_filter} <= @MyDateLookup_End

Dynamic Dates allow IR to more effectively analyze GL Data, as you now have a way of calculating your prior balance data.

Dynamic Dates are designed so that you can still edit your SQL information inside your favorite SQL Editor. By following the notation of a SQL variable, you can define SQL Variables in your script with some sample values, and test your SQL directly inside your editor. You don’t need to be constantly editing your SQL to add and remove the IR Dynamic Date variables.

As an example, the following is a valid SQL Server Script (assuming you have a table called history and a date filter called invoice_date

/* Dummy Variable Declarations so SQL will run */

declare @invoice_date_start varchar(20)

select @invoice_date_start='2010-01-01'

declare @invoice_date_end varchar(20)

select @invoice_date_end='2010-01-01'

/* Now Enter your SQL for the IR Main transaction table here */

select * from history

where invoice_date>=@invoice_date_start and

 invoice_date<=@invoice_date_end

There is a new Filter Type that lets you specify the Type of Date Filter. There are 2 values.

Where Clause; This will use the classic IR based start and end date filter in the where clause

Dynamic Date: This allows you to control exactly how the date filter will interact with your data.

